Пятница, 31.01.2025, 11:51
Приветствую Вас, Гость

Квадратичная функция
[ Скачать с сервера (390.5 Kb) ]27.01.2020, 22:41

В уравнении квадратичной функции:

a - старший коэффициент

b - второй коэффициент

с  - свободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции y=x^2 имеет вид:

 

братите внимание на точки, обозначенные зелеными кружками - это, так называемые "базовые точки". Чтобы найти координаты этих точек для функции y=x^2, составим таблицу:

Внимание! Если в уравнении квадратичной функции старший коэффициент a=1, то график квадратичной функции имеет ровно такую же форму, как график функции y=x^2 при любых значениях остальных коэффициентов.

График  функции y=-x^2 имеет вид:

fr1

Для нахождения координат базовых точек составим таблицу:

fr3

Обратите внимание, что график функции y=-x^2 симметричен графику функции y=x^2 относительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0, то ветви параболы напрaвлены вверх.

Если старший коэффициент a<0, то ветви параболы напрaвлены вниз.

Второй параметр для построения графика  функции - значения х, в которых функция равна нулю, или нули функции. На графике нули функции f(x) - это точки пересечения графика функции y=f(x) с осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты  точек  пересечения графика функции y=f(x) с осью ОХ, нужно решить уравнение f(x)=0.

В случае квадратичной функции y=ax^2+bx+c нужно решить квадратное уравнение .

Теперь внимание!

В процессе решения квадратного уравнения мы находим дискриминант: D=b^2-4ac, который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если D<0 ,то уравнение ax^2+bx+c=0 не имеет решений, и, следовательно, квадратичная парабола y=ax^2+bx+c не имеет точек пересечения с осью ОХ. Если a>0 ,то график функции выглядит как-то так:

2. Если D=0 ,то уравнение ax^2+bx+c=0  имеет одно решение, и, следовательно, квадратичная парабола y=ax^2+bx+c  имеет одну точку пересечения с осью ОХ. Если a>0 ,то график функции выглядит примерно так:

3.  Если D>0 ,то уравнение ax^2+bx+c=0  имеет два решения, и, следовательно, квадратичная парабола y=ax^2+bx+c  имеет две точки пересечения с осью ОХ:

x_1={-b+sqrt{D}}/{2a},  x_2={-b-sqrt{D}}/{2a}

Если a>0 ,то график функции выглядит примерно так:

Скачать презентацию о квадратичной функции можно нажав здесь

 

Категория: Алгебра | Добавил: oleshkasok
Просмотров: 91 | Загрузок: 1 | Рейтинг: 0.0/0